Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Biosens Bioelectron ; 197: 113762, 2022 Feb 01.
Article in English | MEDLINE | ID: covidwho-1487618

ABSTRACT

The COVID-19 pandemic has resulted in a worldwide health crisis. Rapid diagnosis, new therapeutics and effective vaccines will all be required to stop the spread of COVID-19. Quantitative evaluation of serum antibody levels against the SARS-CoV-2 virus provides a means of monitoring a patient's immune response to a natural viral infection or vaccination, as well as evidence of a prior infection. In this paper, a portable and low-cost electrochemical immunosensor is developed for the rapid and accurate quantification of SARS-CoV-2 serum antibodies. The immunosensor is capable of quantifying the concentrations of immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies against the SARS-CoV-2 spike protein in human serum. For IgG and IgM, it provides measurements in the range of 10.1 ng/mL - 60 µg/mL and 1.64 ng/mL - 50 µg/mL, respectively, both with an assay time of 13 min. We also developed device stabilization and storage strategies to achieve stable performance of the immunosensor over 24-week storage at room temperature. We evaluated the performance of the immunosensor using COVID-19 patient serum samples collected at different time points after symptom onset. The rapid and sensitive detection of IgG and IgM provided by our immunosensor fulfills the need of rapid COVID-19 serological testing for both point-of-care diagnosis and population immunity screening.


Subject(s)
Antibodies, Viral/isolation & purification , Biosensing Techniques , COVID-19 , COVID-19/diagnosis , COVID-19 Serological Testing , Humans , Immunoassay , Immunoglobulin G/isolation & purification , Immunoglobulin M/isolation & purification , Pandemics , SARS-CoV-2 , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus
2.
J Immunol Methods ; 496: 113096, 2021 09.
Article in English | MEDLINE | ID: covidwho-1349521

ABSTRACT

Serology or antibody tests for COVID-19 are designed to detect antibodies (mainly Immunoglobulin M (IgM) and Immunoglobulin G (IgG) produced in response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) infection. In this study, 30 lateral flow immunoassays were tested using serum or plasma from patients with confirmed SARS CoV-2 infection. Negative serological controls were accessed from a well-characterised bank of sera which were stored prior to February 2020. Operational characteristics and ease of use of the assays are reported. 4/30 (13%) of kits (Zheihang Orient Gene COVID-19 IgG/IgM, Genrui Novel Coronavirus (2019-nCoV) IgG/IgM, Biosynex COVID-19 BSS IgG/IgM, Boson Biotech 2019-nCoV IgG/IgM) were recommended for SAHPRA approval based on kit sensitivity. Of these, only the Orientgene was recommended by SAHPRA in August 2020 for use within the approved national testing algorithm while the remaining three received limited authorization for evaluation. All kits evaluated work on the same basic principle of immunochromatography with minor differences noted in the shape and colour of cartridges, the amount of specimen volume required and the test duration. Performance of the lateral flow tests were similar to sensitivities and specificities reported in other studies. The cassettes of the majority of kits evaluated (90%) detected both IgG and IgM. Only 23% of kits evaluated contained all consumables required for point-of-care testing. The study highlights the need for thorough investigation of kits prior to implementation.


Subject(s)
Antibodies, Viral/isolation & purification , COVID-19 Serological Testing/instrumentation , COVID-19/diagnosis , Immunoassay/instrumentation , Reagent Kits, Diagnostic/statistics & numerical data , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19 Serological Testing/statistics & numerical data , Humans , Immunoassay/statistics & numerical data , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin G/isolation & purification , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunoglobulin M/isolation & purification , Point-of-Care Testing/statistics & numerical data , RNA, Viral/blood , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Sensitivity and Specificity
3.
J Med Virol ; 93(5): 3084-3091, 2021 05.
Article in English | MEDLINE | ID: covidwho-1196538

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is caused by Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Fast, accurate, and simple blood-based assays for quantification of anti-SARS-CoV-2 antibodies are urgently needed to identify infected individuals and keep track of the spread of disease. METHODS: The study included 33 plasma samples from 20 individuals with confirmed COVID-19 by real-time reverse-transcriptase polymerase chain reaction and 40 non-COVID-19 plasma samples. Anti-SARS-CoV-2 immunoglobulin M (IgM)/immunoglobulin A (IgA) or immunoglobulin G (IgG) antibodies were detected by a microfluidic quantitative immunomagnetic assay (IMA) (ViroTrack Sero COVID IgM + IgA/IgG Ab, Blusense Diagnostics) and compared to an enzyme-linked immunosorbent assay (ELISA) (EuroImmun Medizinische Labordiagnostika). RESULTS: Of the 33 plasma samples from the COVID-19 patients, 28 were positive for IgA/IgM or IgG by IMA and 29 samples were positive by ELISA. Sensitivity for only one sample per patient was 68% for IgA + IgM and 75% IgG by IMA and 80% by ELISA. For samples collected 14 days after symptom onset, the sensitivity of both IMA and ELISA was around 91%. The specificity of the IMA reached 100% compared to 95% for ELISA IgA and 97.5% for ELISA IgG. CONCLUSION: IMA for COVID-19 is a rapid simple-to-use point-of-care test with sensitivity and specificity similar to a commercial ELISA.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Immunomagnetic Separation/methods , Point-of-Care Testing , SARS-CoV-2 , Aged , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/isolation & purification , Immunoglobulin G/blood , Immunoglobulin G/isolation & purification , Immunoglobulin M/blood , Immunoglobulin M/isolation & purification , Male , Middle Aged , RNA, Viral , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
4.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1195815

ABSTRACT

Serological assays for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to support clinical diagnosis and epidemiological investigations. Recently, assays for large-scale detection of total antibodies (Ab), immunoglobulin G (IgG), and IgM against SARS-CoV-2 antigens have been developed, but there are limited data on the diagnostic accuracy of these assays. This study was a Danish national collaboration and evaluated 15 commercial and one in-house anti-SARS-CoV-2 assays in 16 laboratories. Sensitivity was evaluated using 150 samples from individuals with asymptomatic, mild, or moderate COVID-19, nonhospitalized or hospitalized, confirmed by nucleic acid amplification tests (NAAT); samples were collected 13 to 73 days either from symptom onset or from positive NAAT (patients without symptoms). Specificity and cross-reactivity were evaluated in samples collected prior to the SARS-CoV-2 epidemic from >586 blood donors and patients with autoimmune diseases, cytomegalovirus or Epstein-Barr virus infections, and acute viral infections. A specificity of ≥99% was achieved by all total-Ab and IgG assays except one, DiaSorin Liaison XL IgG (97.2%). Sensitivities in descending order were Wantai ELISA total Ab (96.7%), CUH-NOVO in-house ELISA total Ab (96.0%), Ortho Vitros total Ab (95.3%), YHLO iFlash IgG (94.0%), Ortho Vitros IgG (93.3%), Siemens Atellica total Ab (93.2%), Roche Elecsys total Ab (92.7%), Abbott Architect IgG (90.0%), Abbott Alinity IgG (median 88.0%), DiaSorin Liaison XL IgG (median 84.6%), Siemens Vista total Ab (81.0%), Euroimmun/ELISA IgG (78.0%), and Snibe Maglumi IgG (median 78.0%). However, confidence intervals overlapped for several assays. The IgM results were variable, with the Wantai IgM ELISA showing the highest sensitivity (82.7%) and specificity (99%). The rate of seropositivity increased with time from symptom onset and symptom severity.


Subject(s)
Antibodies, Viral/isolation & purification , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoassay , Cytomegalovirus Infections , Enzyme-Linked Immunosorbent Assay , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Immunoglobulin G/isolation & purification , Immunoglobulin M/isolation & purification , Laboratories , SARS-CoV-2 , Sensitivity and Specificity
5.
BMJ Open ; 11(3): e046800, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1150238

ABSTRACT

OBJECTIVES: In Italy, the pandemic of COVID-19 resulted in congestion of hospitals and laboratories and probably determined an underestimation of the number of infected subjects, as the molecular diagnosis of SARS-CoV-2 infection was mainly performed on hospitalised patients. Therefore, limited data are available about the number of asymptomatic/paucisymptomatic subjects in the general population across time. To understand SARS-CoV-2 infection in the general population, we have developed a cross-sectional study (the 'UNIversity against CORoNavirus study') to investigate infection trends in asymptomatic/paucisymptomatic subjects in Milan (Italy), between March and June 2020. PARTICIPANTS: The study population included 2023 subjects asymptomatic at the enrolment. PRIMARY OUTCOME MEASURES: A nasal mid-turbinate swab for the detection of SARS-CoV-2 RNA and blood specimen for testing serum antibodies (immunoglobulin M (IgM) and IgG) were collected. RESULTS: Subjects showing positivity for the SARS-CoV-2 RNA and/or for anti-SARS-CoV-2 Ig is 237 (11.7%). Only 1.2% (n=25) of the total population had a positive nasal swab for SARS-CoV-2 and the large majority (21/25) of them were observed in March. A total of 226 subjects (11%) had IgM (n=19; 0.9%), IgG (n=155; 7.7%) or both (n=52; 2.6%) against SARS-CoV-2. Subjects with a present or past SARS-CoV-2 infection did not differ from other subjects as regards the number of cohabiting family members, travels, fever and upper and lower respiratory infection episodes. CONCLUSIONS: Results from the present study support the hypothesis that the actual spread of the virus in Lombardy was underestimated in the official records. However, as it is not known how long Ig persist, numbers should be taken cautiously.


Subject(s)
Antibodies, Viral/isolation & purification , COVID-19 Serological Testing , COVID-19/diagnosis , Immunoglobulin G/isolation & purification , Immunoglobulin M/isolation & purification , RNA, Viral/isolation & purification , Adult , COVID-19/blood , Cross-Sectional Studies , Female , Humans , Italy/epidemiology , Male , Middle Aged , SARS-CoV-2
6.
Int J Nanomedicine ; 16: 715-724, 2021.
Article in English | MEDLINE | ID: covidwho-1067512

ABSTRACT

OBJECTIVE: The coronavirus disease (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is now rapidly spreading globally. Serological tests are an important method to assist in the diagnosis of COVID-19, used for epidemiological investigations. In this study, we aimed to investigate the impact of different types of vacuum collection tubes on the detection of SARS-CoV-2 IgM and IgG antibodies, using the colloidal gold immunochromatographic assay (GICA). PATIENTS AND METHODS: A total of 112 patients with COVID-19 and 200 healthy control subjects with no infection were enrolled in this study. Their serum and plasma were collected into four different types of vacuum blood collection tubes. SARS-CoV-2 IgM and IgG specific antibodies in the plasma and serum were then detected by GICA and chemiluminescence assay (CA), respectively. In addition, the particle sizes of different colloidal gold solutions in the presence of different anticoagulants and coagulants were evaluated by both laser diffraction (Malvern) and confocal laser microscope, respectively. RESULTS: Our results revealed that anticoagulated plasma with EDTA-K2 improved the positive detection rate of SARS-CoV-2 IgM antibodies. Furthermore, our results shown that the detection results by GICA and CA were highly consistent, especially, the results of EDTA-K2 anticoagulated plasma detected by GICA was more consistent with CA results. We confirmed that EDTA-K2 could improve the detection sensitivity of SARS-CoV-2 IgG antibodies by chelating excessive colloidal gold compared with sodium citrate or lithium heparin, these methodologies did not appear to cause false positives. Colloidal gold particles could be chelated and aggregated by EDTA-K2, but not by sodium citrate, lithium heparin and coagulants. CONCLUSION: GICA is widely used to detect antibodies for the advantages of convenient, fast, low cost, suitable for screening large sample and require minimal equipment. In this study, we found that EDTA-K2 amplified the positive antibody signal by chelating colloidal gold and improved the detection sensitivity of SARS-CoV-2 IgM and IgG antibodies when using the GICA. Therefore, we suggested that EDTA-K2 anticoagulated plasma was more suitable for the detection of SARS-CoV-2 antibodies.


Subject(s)
Antibodies, Viral/isolation & purification , Chelating Agents/chemistry , Edetic Acid/chemistry , Gold Colloid/chemistry , Immunoassay/methods , Immunoglobulin G/isolation & purification , Immunoglobulin M/isolation & purification , SARS-CoV-2/immunology , Adult , Antibodies, Viral/blood , Antibody Specificity/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Molecular Weight , Particle Size , Polymers/chemistry , Sensitivity and Specificity
7.
Elife ; 92020 09 07.
Article in English | MEDLINE | ID: covidwho-745648

ABSTRACT

Understanding and mitigating SARS-CoV-2 transmission hinges on antibody and viral RNA data that inform exposure and shedding, but extensive variation in assays, study group demographics and laboratory protocols across published studies confounds inference of true biological patterns. Our meta-analysis leverages 3214 datapoints from 516 individuals in 21 studies to reveal that seroconversion of both IgG and IgM occurs around 12 days post-symptom onset (range 1-40), with extensive individual variation that is not significantly associated with disease severity. IgG and IgM detection probabilities increase from roughly 10% at symptom onset to 98-100% by day 22, after which IgM wanes while IgG remains reliably detectable. RNA detection probability decreases from roughly 90% to zero by day 30, and is highest in feces and lower respiratory tract samples. Our findings provide a coherent evidence base for interpreting clinical diagnostics, and for the mathematical models and serological surveys that underpin public health policies.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Immunoglobulin G/blood , Immunoglobulin M/blood , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , RNA, Viral/analysis , Antibodies, Viral/blood , Antibodies, Viral/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/methods , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G/isolation & purification , Immunoglobulin M/isolation & purification , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , RNA, Viral/isolation & purification , SARS-CoV-2
9.
Public Health ; 186: 1-5, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-642460

ABSTRACT

OBJECTIVES: Nucleic acid testing is the gold standard method for the diagnosis of coronavirus disease 2019 (COVID-19); however, large numbers of false-negative results have been reported. In this study, nucleic acid detection and antibody detection (IgG and IgM) were combined to improve the testing accuracy of patients with suspected COVID-19. STUDY DESIGN: The positive rate of nucleic acid detection and antibody detection (IgG and IgM) were compared in suspected COVID-19 patients. METHODS: A total of 71 patients with suspected COVID-19 were selected to participate in this study, which included a retrospective analysis of clinical features, imaging examination, laboratory biochemical examination and nucleic acid detection and specific antibody (IgM and IgG) detection. RESULTS: The majority of participants with suspected COVID-19 presented with fever (67.61%) and cough (54.93%), and the imaging results showed multiple small patches and ground-glass opacity in both lungs, with less common infiltration and consolidation opacity (23.94%). Routine blood tests were mostly normal (69.01%), although only a few patients had lymphopenia (4.23%) or leucopenia (12.68%). There was no statistical difference in the double-positive rate between nucleic acid detection (46.48%) and specific antibody (IgG and IgM) detection (42.25%) (P = 0.612), both of which were also poorly consistent with each other (kappa = 0.231). The positive rate of combined nucleic acid detection and antibody detection (63.38%) was significantly increased, compared with that of nucleic acid detection (46.48%) and that of specific antibody (IgG and IgM) detection (42.25%), and the differences were statistically significant (P = 0.043 and P = 0.012, respectively). CONCLUSIONS: Nucleic acid detection and specific antibody (IgG and IgM) detection had similar positive rates, and their combination could improve the positive rate of COVID-19 detection, which is of great significance for diagnosis and epidemic control.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Adolescent , Adult , Aged , Antibodies, Viral/isolation & purification , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Coronavirus Infections/epidemiology , Female , Humans , Immunoglobulin G/isolation & purification , Immunoglobulin M/isolation & purification , Male , Middle Aged , Nucleic Acids/isolation & purification , Pandemics , Pneumonia, Viral/epidemiology , Reproducibility of Results , Retrospective Studies , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL